Prof. Upmanu Lall, Director Water Center

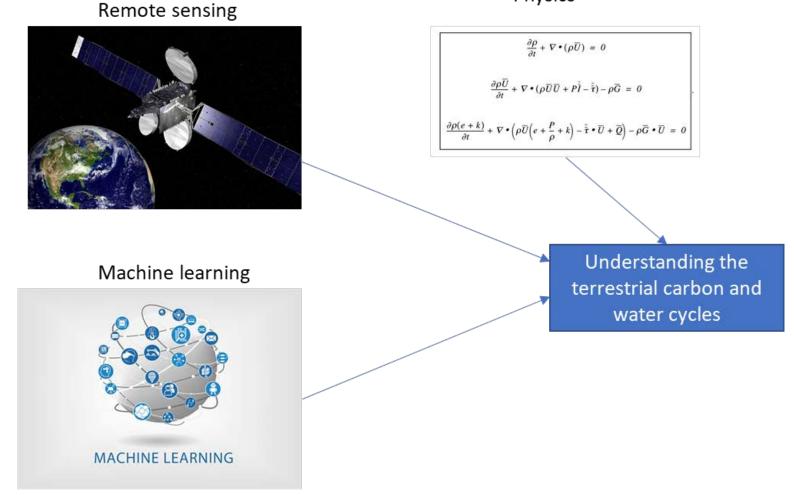
- Climate & hydrologic risk
- Applied statistics & machine learning
- Water sustainability, security, resilience, systems
- Floods and droughts
- Nonlinear dynamics

(link: https://eee.columbia.edu/faculty/upmanu-lall)

Prof. Upmanu Lall, Director Water Center

- The Global Water Sustainability Initiative addresses global water scarcity and risk.
- The Global Flood Initiative is motivated by the need to predict, mitigate and manage floods at a global scale recognizing their climate drivers, and supply chain impacts.
- America's Water seeks to develop sustainable water management and infrastructure design paradigms for the 21st century recognizing the linkages between urban functioning, food, water, energy and climate.
- These programmatic initiatives are backed by research on systems level modeling of hydrology, climate, agronomy and economics.

(link: http://water.columbia.edu/)


Prof. Pierre Gentine, Associate Professor

- Hydrologic cycle
- Land-atmosphere interactions
- Soil moisture
- Artificial intelligence
- Computational engineering science
- Data science
- Imaging modeling & simulation
- Sensing

(link:https://eee.columbia.edu/faculty/pierre-gentine/)

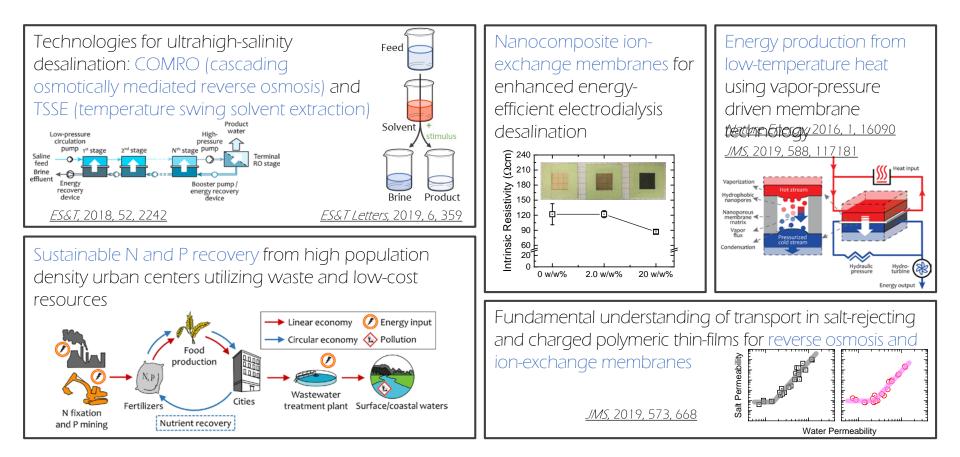
P. Gentine, Associate Professor


Physics

link: https://gentinelab.eee.columbia.edu/

Ngai Yin YIP, Assistant Professor

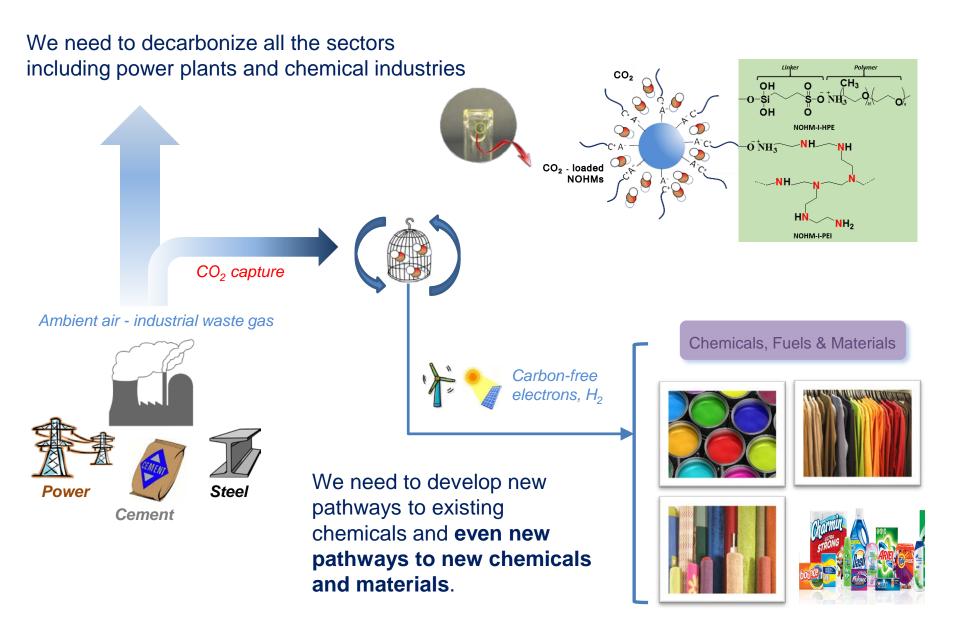
Sustainable Water with Physicochemical Technol


- Ph.D., Chemical and Environmental Engineering, Yale University, 2014
- Faculty since 2015 (tenure-track)
- Email: <u>n.y.yip@columbia.edu</u> | Website: <u>yiplab-h2o-e-env.eee.columbia.edu</u>
- Accolades (selected): CH2M Hill/AEESP Outstanding Doctoral Dissertation Award (2015), *ES&T*Best Papers of 2013, C. Ellen Gonter Best Paper Award (2013)

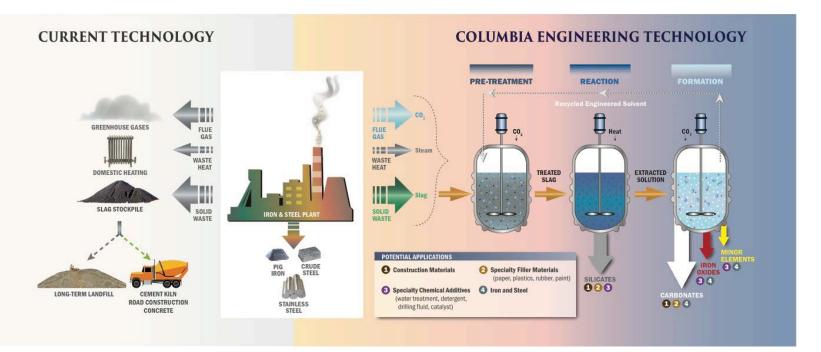
<u>Research interest</u>: advanced physicochemical technologies for *sustainable* production of water and energy; addressing challenges at the interfaces of water-energy-environment

Focus of current research activities

- desalination of ultrahigh-salinity brines
- low-grade heat utilization and conversion
- nutrient recovery from anthropogenic wastes
- energy-efficient electrodialysis desalination
- transport principles in membranes
- thermodynamics of environmental processes


Prof. Alissa Park, Associate Director Lenfest Center for Sustainable Energy

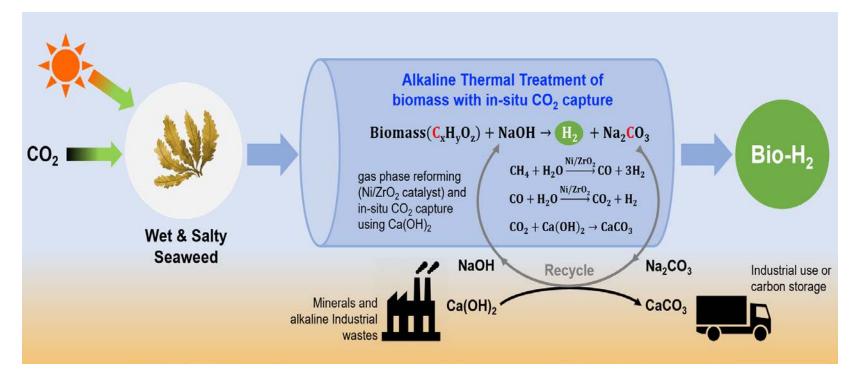
- Sustainable Energy and Environment
- Carbon Capture Utilization and Storage (CCUS)
- Particle Technology
- Clean fossil energy conversion systems
- Alternative energy production
- Electrostatic tomography
- Multiphase flow systems

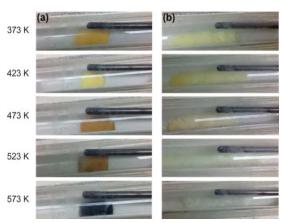


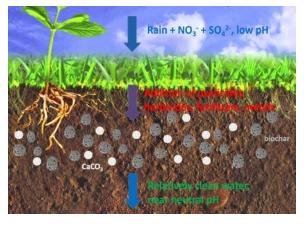
(links: https://cheme.columbia.edu/faculty/ah-hyung-alissa-park; http://energy.columbia.edu/)

A.-H. Alissa Park, Director of the Lenfest Center for Sustainable Energy Innovative Nanomaterials for Combined CO₂ Capture and Conversion

A.-H. Alissa Park, Director of the Lenfest Center for Sustainable Energy React CO₂ with Solid Wastes to produce Green Construction Materials




Columbia's GreenOre technology is capturing CO_2 using industrial solid wastes while recovering rare earth elements.


One steel plant in China generates slag that can cover 1/3 of Tribeca every four years.

A.-H. Alissa Park, Director of the Lenfest Center for Sustainable Energy BioEnergy with Carbon Capture and Store (BECCS): Negative Emission Technology

The conversion of wet and salty biogenic wastes to highpurity H_2 with CO_2 capture can provide opportunities for carbon neutral or even negative energy production. Produced carbonates can be used for soil remineralization to improve crop yield and protect groundwater.

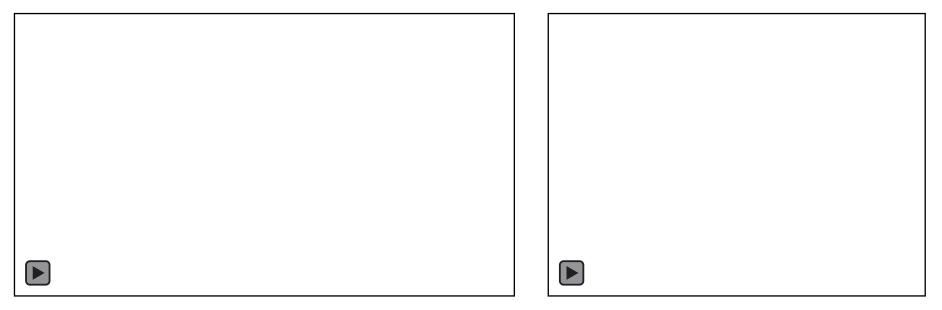
Prof. Dan Steingart, Co-Director Electrochemical Engineering Lab

- Batteries
- Printed electronics
- Electrochemistry

His group studies the systematic behaviors of material deposition,

conversion, and dissolution in electrochemical reactors with a focus on

energy storage devices.


(links:<u>https://engineering.columbia.edu/faculty/dan-steingart</u>

https://ceec.engineering.columbia.edu/people/daniel-steingart)

Steingart Group

If a battery falls does it make a sound?

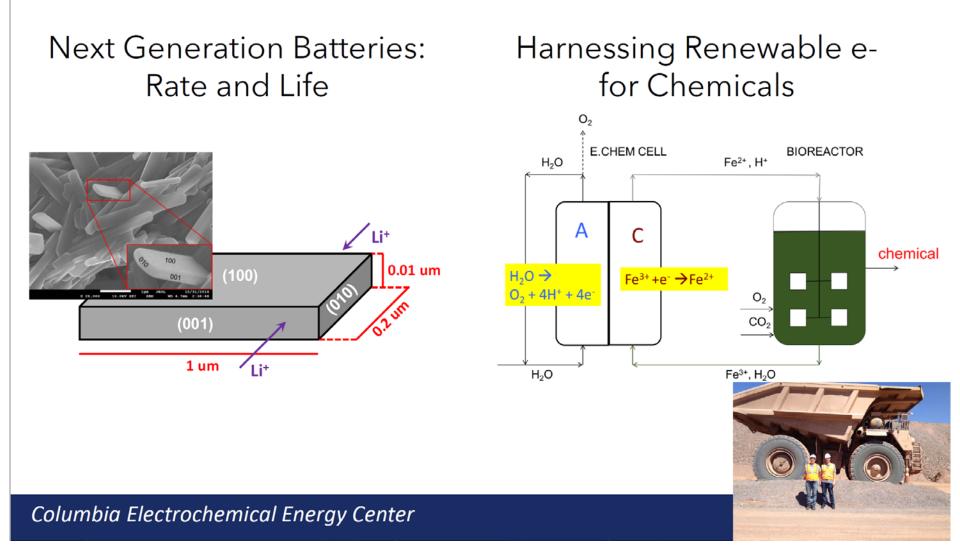
Can a battery constantly short circuit and not kill us?

(Yes and it's really telling)

(Yes and it opens up new designs)

My group studies and exploits generally unwanted behaviors in elec

Prof. Alan West, Electrochemical Engineering Lab


- Electrochemical engineering
- Electrolysis
- Electrochemical sensors
- Batteries
- Fuel cells
- Electrodeposition
- Energy storage
- Energy conversion

Alan C. West, ChE and EEE

Creation, Analysis, and Development of Electrochemical Technologies

Prof. Xi Chen, Professor

Carbon dioxide capture, utilization, and storage

Energy storage

Energy conversion

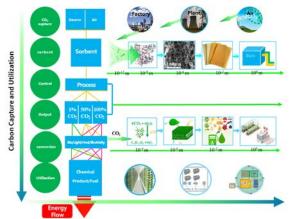
Multi-scale simulation

Soft materials and robotics

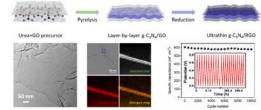
Morphogenesis

Mechanobiology

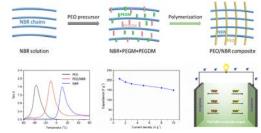
Nanomaterials


Nanomechanics

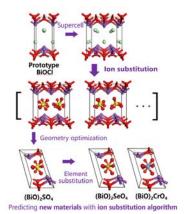
(links: https://eee.columbia.edu/faculty/xi-chen; http://www.columbia.edu/~xc2107/lab.html)



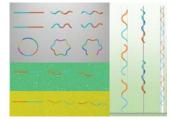
Xi Chen, Professor Earth and Environmental Engineering

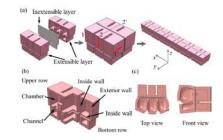

CO_2 capture and utilization

Energy storage

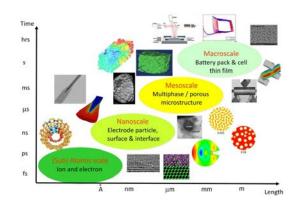


Ultrathin conductive graphitic carbon nitride assembly boosting energy storage




Flexible and highly-conductive composite ionogels for soft electronic devices

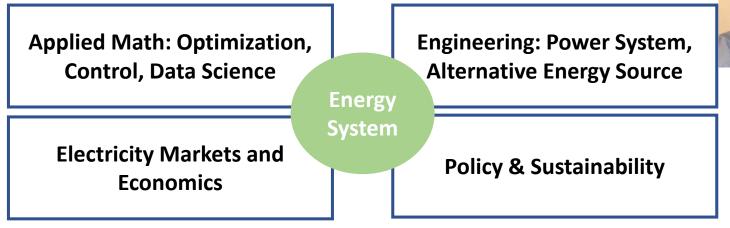
Material genomics



Soft materials

Multiscale mechanics of materials

Materials for energy, earth & environmental engineering



(link: https://eee.columbia.edu/faculty/xi-chen)

Bolun Xu, Ass. Professor

• Research: Sustainable Energy System

- Projects:
 - Data-driven energy system and market analysis
 - Energy analysis for transportation electrification
- Courses:
 - Energy System Economics and Optimization
 - Environmental Data Analysis and Modeling

(links: https://bolunxu.github.io/)

Research Example: Determining location and size for energy storage projects US West-Coast

Engineering

WECC power system model:

• 240 nodes; 448 lines; 71 gen.; renewables. Operation data for one year:

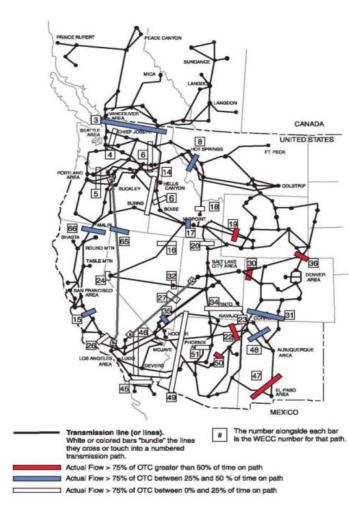
• Demand, renewable, fuel cost.

Economics

Cost of different storage technology

- Lithium-ion battery energy storage (Li-BES)
- Compressed air energy storage (CAES)

Objective to minimize social cost:


- Location to build storage
- Technology and configuration

Operation research

Problem size:

- ~10 million variables and constraints
- (Almost) impossible to solve directly
- Use mathematics techniques!

Results be used for policy recommendations...

Prof. Vasilis Fthenakis, Adjunct Professor, Director Center for Life Cycle Analysis

- Renewable energy systems integration
- Solar forecasting
- Life cycle analysis
- Solar water desalination
- Photovoltaics recycling
- Mining/mineral systems analysis

(links:<u>https://eee.columbia.edu/faculty/vasilis-fthenakis; http://www.clca.columbia.edu/</u>)

Center for Life Cycle Analysis: Prof. Fthenakis, Director Investigating Big Solar: Challenges and Opportunities

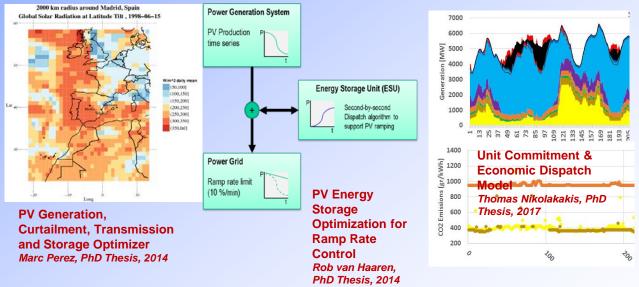
Challenges

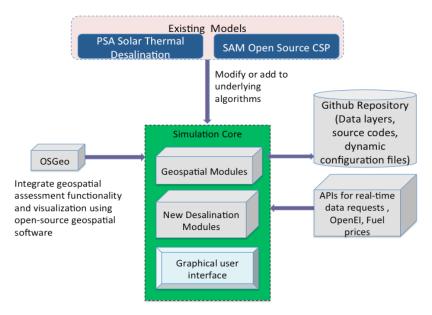
- Operational Challenges
 - Variability, Transmission, Grid Reliability/Stability
- Perceptions on Environmental Impact

New Business Opportunities

- Solar Energy-Water Desalination
- Energy Storage
- Solar Energy Water Nexus in Mining
- Solar Fuels and Chemicals

Course: E4190 Photovoltaics Systems Integration and Sustainability




Renewable Energy Systems Integration Solar Variability Solutions: Cost Optimization

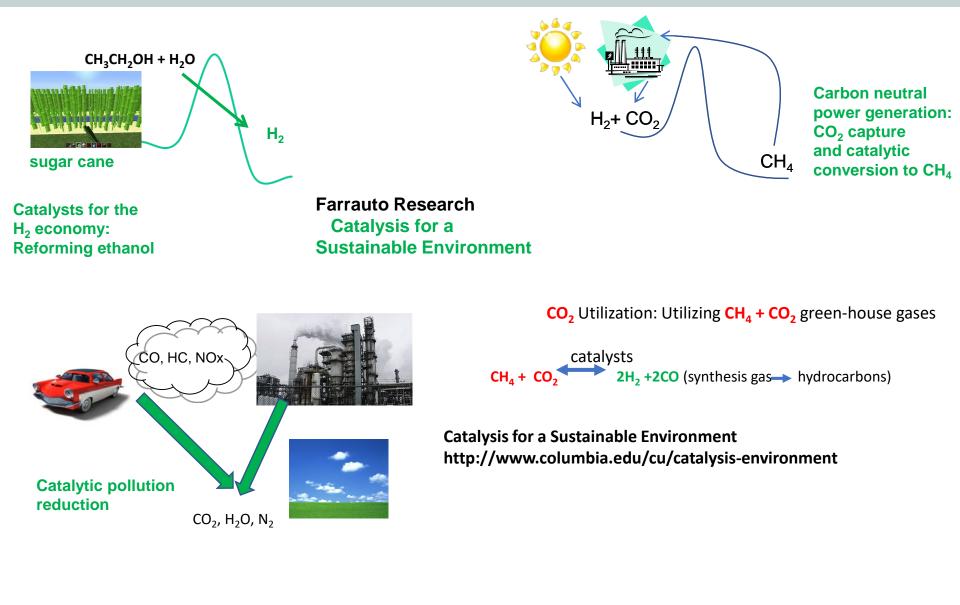
Model development at the Center for Life Cycle Analysis (CLCA)

GIS-based graphical user interface tool analyzing solar thermal desalination systems and high-potential implementation regions

- Reference Desalination models: MSF, MED, MED-TVC, RO
- New Technologies & Potential Hybrids: MD, RO-MED, RO-MD, crystallization for ZLD.
- The analysis tool design will be Open Access, Expandable, using a Modular Architecture

US-DOE Award, 2018-2021 PSA: Plataforma Solar de Almeria SAM: NREL System Advisory Model

Prof. Robert (Bob) Farrauto, Catalysis for a Sustainable Environment Lab


- Heterogeneous catalysts and process for a sustainable environment
- Air pollution abatement
- Dual function materials for CO2 capture and conversion to fuels
- New catalysts and processes for catalytic hydrogen generation

(links:<u>https://eee.columbia.edu/faculty/robert-farrauto;</u>

http://www.columbia.edu/cu/catalysis-environment/)



R. Farrauto, Director Catalysis for A Sustainable Environment

Prof. Ponisseril Somasundaran, The National Science Foundation Center for Particulate and Surfactant Systems

- Surface/colloid chemistry of materials/nanoparticles
- Greener chemicals
- Biosurfaces

- Sustainability in underground resources exploration, e.g. extraterrestrial mining
- Molecular interactions at interfaces using advanced spectroscopy
- Polymers/surfactants/protein absorption, flocculation/dispersion
- Sunlight powered photosynthesis of fuels from CO₂/water

(link: https://eee.columbia.edu/faculty/ponisseril-somasundaran)

Columbia National Science Foundation Center for Particulates Polymer & Surfactant Systems

- Develop novel green surfactants/polymers/bio-reagents for interfacial applications
- Investigate particle-Surfactant-Polymer-Protein static and dynamic interactions for optimal performance
- Select schemes for synergy among chemicals
- Carry out long term basic research for new technological and intellectual paradigms
- Supply a venue for industry-academic interactions for relevant research

(link: http://blogs.cuit.columbia.edu/iucrc/)

26

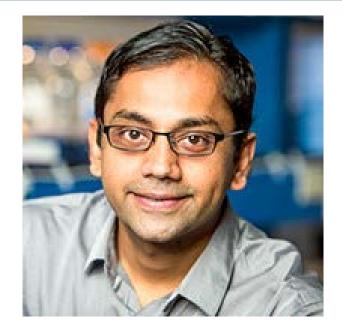
Recent Success Story

Breakthroughs

- Prototype Greenness Index,
- Greener Molecules for Frothing. Nanogels, tissue engng
- Time lapse understanding of polymer-surfactant dancing Catalysis by doped nanoparticles for CO₂ to Alcohols
- New programs: Hydraulic fracturing, Ebola
- **Public Awarenes**
- Stehpen Hawking's Brave New World:Discovery Chan New York Times,National Geographic,New Yorker Globo TV
- **Publications and Patents**
- JACS, PNAS, Nature Nanotechnology, JPCC, JCIS, Langmuir, IJMP, C&S: A, J. Catalysis, PCCP,.....

Collaborations

- NTNU, Tulane, CUNY, Poly, ISU, LSU,
- UNY, IITM, Chalmers U JHU, University of Bern, IAB companies



Prof. Kartik Chandran, KC Laboratory

- Engineered systems for resource recovery
- Microbial N-cycling
- Sustainable sanitation and wastewater treatment
- Reactors
- Novel molecular based biokinetic estimation tools
- Bioprocess modeling



- Global climate impacts of engineered wastewater treatment practice
- Microbial ecology of engineered biological waste and water treatment
- Elucidation of microbial biochemical degradation pathways
- Parameter identification for complex biotransformations

(Links: https://eee.columbia.edu/faculty/kartik-Chandran; https://kchandranlab.wixsite.com/kclab)

Prof. Nickolas Themelis, Emeritus Professor

- Data science
- Design, and modeling
- Waste to energy
- Mining

Technology, policy, economic tools that will reduce landfilling in the U.S.

(Currently 90% of post recycling wastes are disposed in landfills), Latin

America, and Asia.

(link:https://eee.columbia.edu/faculty/nickolas-themelis)

Prof. Thanos Bourtsalas, Lecturer

- Circular Economy
- Sustainable Management of Resources
- Process engineering
- Design and modelling of urban development
- Life Cycle Environmental and Cost Analysis
- Public policy for sustainable development
- Economics for sustainable development

(link:https://eee.columbia.edu/athanasios-bourtsalas)

Circular Economy

Advisors: Dr. Thanos Bourtsalas; other faculty

Columbia University EARTH ENGINEERING CENTER

Urban development:

- Feasibility studies on the deployment of sustainable development projects, e.g. transformation of contaminated open dumps to eco-industrial parks
 - Technical, environmental, economic and financial, and policy components
- Formulation and monitor of Public and Private Partnerships
- Results-based (blended) financing schemes to minimize the construction, operation, and counterparty risks, incl. environmental, in infrastructure investments

Industry:

- Redesign of processes for minimum loss of resources, and of products to last longer and to be easily repaired/reused;
- Remanufacture of products to be used in primary production;
- Recycle of products or its components for materials production.
 - Recycling should ideally produce high added value materials.

Applies to both areas: Industrial Ecology/Life Cycle Analysis (LCA) studies to understand the effect of any adjustment on the economy and the environment

Sustainable Management of Urban and Industrial Residues

Advisors: Dr. Thanos Bourtsalas and Nickolas Themelis; other faculty

Columbia University Earth Engineering Center

RECOVERY OF MATERIALS:

- Recycling of metals, paper, plastics, glass
- -Composting
- -Use of ash in civil works

RECOVERY OF ENERGY AND FUELS:

- Electricity from Waste-to-Energy (WTE) power plants
- Industrial and residential (district) heating
- Chemical recycling to recover fuels from mixed plastic materials
- Use of alternative fuels in cement manufacturing
- Desalination

Societal objectives: Conservation of non-renewable resources and land; mitigation of climate change. For examples of past M.S. EAEE theses link to gwcouncil.org/publications/research-projects