The undergraduate Earth and Environmental Engineering curriculum provides students with challenging courses, hands-on laboratory class experience, and collaborative design project work.

Undergraduate Admissions

More information about admissions is available.

Faculty Advisors:

Professor Xi Chen
Professor Upmanu Lall

What do earth and environmental engineers do?

It’s now recognized throughout the world that continuing economic development must be accompanied by the intelligent use of the Earth’s resources. Moreover, the rapid pace of globalization has introduced a host of new environmental problems to be addressed in the 21st century, ranging from the search for reliable energy and water, to the impacts of global warming, to the worldwide transmission of disease through the environment.

Earth and environmental engineers can contribute much to these global efforts towards sustainable development by developing new technologies to tackle these large and complex problems. Furthermore, existing technologies that have been developed for resource (minerals, energy, water) utilization and environmental remediation can be applied to emerging challenges like resource recovery from used materials (i.e., recycling) and disease prevention.

The EEE undergraduate program encompasses these technologies and trains engineers who can provide leadership and innovation in the conscientious use of Earth’s resources. Potential employers include private companies and government agencies that deal directly with environmental problems, and also a diverse spectrum of industries that increasingly require environmental expertise, including energy supply, management consulting and financial services. Graduates are also well trained to continue with master's and doctoral studies not only in earth and environmental engineering and sciences, but also business, public policy, international studies, law, and medicine.

Undergraduate Program in Earth and Environmental Engineering

Program Educational Objectives

  1. Graduates equipped with the necessary tools (mathematics, chemistry, physics, Earth sciences, and engineering science) will understand and implement the underlying principles used in the engineering of processes and systems.
  2. Graduates will be able to pursue careers in industry, government agencies and other organizations concerned with the environment and the provision of primary and secondary materials and energy, as well as continue their education as graduate students in related disciplines.
  3. Graduates will possess the basic skills needed for the practice of earth and environmental engineering, including measurement and control of material flows through the environment, assessment of environmental impact of past, present, and future industrial activities, and analysis and design of processes for remediation, recycling, and disposal of used materials.
  4. Graduates will practice their profession with excellent written and communication skills and with professional ethics and responsibilities.

Student Outcomes

  1. An ability to apply knowledge of mathematics, science, and engineering.
  2. An ability to design and conduct experiments, as well as to analyze and interpret data.
  3. An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health, and safety, manufacturability, and sustainability.
  4. An ability to function on multidisciplinary teams.
  5. An ability to identify, formulate, and solve engineering problems.
  6. An understanding of professional and ethical responsibility.
  7. An ability to communicate effectively.
  8. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
  9. A recognition of the need for, and an ability to engage in life-long learning.
  10. A knowledge of contemporary issues.
  11. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Enrollment and Graduation Statistics

  2009 2010 2011 2012 2013 2014 2015 2016 2017
Sophomore 24 18 21 14 16 9 8 14 12
Junior 20 29 22 21 12 19 13 12 17
Senior 15 19 18 27 22 13 15 15 13
Graduated 14 15 17 26 22 13 12 12 10
Percent Graduated 93% 79% 94% 96% 100% 87% 80% 80% 77%

ABET Accreditation

The BS program in Earth and Environmental Engineering is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.